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A new approach for constructing functionally invariant solutions for dynamic problems of the plane theory of elasticity of 
anisotropic media is proposed. Solutions of the equations of motion in displacements and potentials, which express plane waves 
and waves from a point source, and also complex solutions of a general type are obtained and investigated. The problem of the 
reflection of plane waves from the boundary of a half-space is solved for comparison with earlier results [l]. The solutions obtained 
agree with the physical meaning of the problems and with the solutions for isotropic media. 0 2001 Elsevier Science Ltd. All 
rights reserved. 

Solutions of the equations of motion in displacements and potentials respectively for anisotropic media 
with four and three constants of elasticity with certain limitations on the other constants were obtained 
in [ 1,2] by the Smirnov and Sobolev method. Since a procedural inaccuracy was tolerated in these papers 
when constructing these solutions, the solutions obtained disagree somewhat with the physical meaning 
of the problem. In this paper we extend the investigation of these problems by the same method for 
anisotropic media with four constants of elasticity with no limitations on the constants of elasticity. 

The Smirnov and Sobolev method of functionally invariant solutions [3-S], based on the idea of using 
the theory of functions of a complex variable to solve the wave equations, has become widely used 
to solve a number of important problems related to the propagation of transient elastic waves in 
isotropic media. It was pointed out in [6] that, after the basic results in the dynamics of elastic 
media obtained by Stokes, Rayleigh, Lamb and Love, the most important investigations were made 
by Smimov and Sobolev, who developed a new logically faultless and mathematically rigorous 
method. 

Wave processes in anisotropic media are complex and diverse, and basically depend on the ratios of 
the constants of elasticity and of the directions of propagation of the waves [7-141. Unlike isotropic 
media, the equations of motion of anisotropic media do not reduce to wave equations, and well-known 
methods from the dynamics of isotropic media [6] have become widely used to integrate them. The 
effectiveness of these methods depends on the type of problems and class of anisotropic media. 

1. SOLUTIONS OF THE WAVE EQUATIONS 
FOR AN ISOTROPIC MEDIUM 

The functionally invariant solutions of the wave equations in the case of plane wave can be represented 
by the expressions [4] 

UI =ew,(&), VI =5,w,ca,> 

uz = 5*w*@*). uq = -eQ(Q2) (1.1) 

R, =t+CLx+&y, k=l,2 

5, =(1/a, -8 * x, ) 52 =(1/4-e*)~ 

where a0 and do are the squares of the phase velocities of longitudinal (k = 1) and transverse (k = 2) 
waves. 
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968 I. 0. Osipov 

Functions (1.1) in the sections 

OG~=G~,-~, O<&i,-~ (1.2) 

describe real longitudinal and transverse plane waves, propagating in directions defined by the 
inequalities 

O~cX,~X/2. OQol,SX/2 (1.3) 

where oi and o2 are the angles which the normals to the wave fronts make with they axis. On the 
boundaries of sections (1.2) solutions (1.1) take the values: 
when 0 = 0 

when 8 = ai” and 0 = dih 

-yz u, = a0 w, (t + a,ly2x), VI =o 

u2 ~0, u2 =-d;%v2(t+d&) 

(1.5) 

Hence, solutions (1.1) defined in sections (1.2), describe the propagation of longitudinal and 
transverse plane waves in directions characterized by the continuously increasing angles CX~ and CY~ in 
the intervals (1.3). 

2. SOLUTION OF THE EQUATIONS OF MOTION 
FOR AN ANISOTROPIC MEDIUM 

The equations of motion for anisotropic media with four constants of elasticity have the form [l] 

au, + du, + cu x,, = u,, 

du, +bu, +cu,), =u,, (2.1) 

The ratios of the constants of elasticity to the density of the media 

a=cll/p, b=c22/p, d=c,/p, c=(c~+c,~)/~ (2.2) 

satisfy the necessary and sufficient conditions for the form of the elastic energy to be positive- 
definite 

a>d, b>d, d>O, ab-(c-dJz>O (2.3) 

which are satisfied for all practical media of the anisotropy class considered and are the necessary and 
sufficient conditions for elastic waves to propagate in any direction. 

We will express the solution of system of equations (2.1) by the functions 

u = c/(Q), u= V(Q) 

where the function 51 is defined in implicit form by the equation 

(2.4) 

6 = r(n)t + m(Q)x + n(s2)y + K(R) = 0 (2.5) 

We will assume that U and Vare continuous twice-differentiable functions if all the coefficients of the 
variable quantities in them are real. If some of these in any region are complex quantities, then U and 
V are analytical functions in this region. By determining the derivatives of function (2.4) using well- 
known formulae for differentiating complex and implicit functions [4] and substituting their values into 

-tern of equations (2.1) we obtain the conditions 



Solutions for dynamic problems of plane theory of elasticity of anisotropic media 969 

(ml* + dn* - P)U’(Q) + cmv’(n) = 0 

cmnU’(f2)+ (dm2 + id - 1*)v’(a) = 0 

which establish the relation between functions (2.4). 
We will assume the determinant of system of equations (2.6) to be equal to zero 

(2.6) 

A = (am* + dn* - l*) (dnt* + bn* - l*) - c*m*n* = 0 (2.7) 

Functions (2.4) express the solution of the system of equations of motion (2.1) if the argument R is 
defined by Eq. (2.5) with coefficients which are subject to Eq. (2.7), while the functions themselves satisfy 
conditions (2.6). 

‘l%king Z(Q) = 1, m(Q) = 8, n(Q) = A andK(Q) = -IR in expressions (2.5)-(2.7), we obtain the simplest 
solutions of system of equations (2.1), which represent plane waves 

u, =u,@). up = v,@,) 

a, =t+&+&y, k=1,2 

(2.8) 

where Ak are the roots of Eq. (2.7), which are functions of the variable 8 

h, =(~+(-1)k[~2-(~/b)(1/~-82)(1/d-02)]M)Y2 

H =[(b+d)-(ab+d* -c2)02]/(2bd) 

(2.9) 

The functions U,(Q) and V&&) correspond to the roots & and, according to expressions (2.6), satisfy 
the conditions 

pkU,(a,)+ceh,V;(R,)=0, ‘%%,r/;(n,)+r,v&!&)=o 

pk =d2 +dAi -1, rk =de2+6+1, 

pkrk = c2e2h; 

(2.10) 

The question arises of which of conditions (2.10) needs to be chosen to construct the solution. The 
first condition was chosen previously in [l]. 

The first condition of (2.10) leads to a solution of the equations of motion of the form 

uk =+c&wk(f&), vk =-pkWk<fik> 

while the second condition of (2.10) leads to a solution of the form 

(2.11) 

uk =‘kwk(Qk), uk =-C8&w&> 

Solutions (2.11) take the following values: 
when 8 = 0 

(2.12) 

b-d 
u, =o, u, =- 

b 
WI (r + Gy); u*=o, v,=o 

when 8 = a- !+ (k = 1) and 6 = d-b (k = 2) 

q =o, u, =o, u* =o, a-d 
u*=-- 

d 
w2(t+d-%) 

Solutions (2.12) take the following values: 
when 13~ = 0 

u, =o. u, =o, b-d 
u*=- 

d 
w,(t+d+y), u2 =O 

(2.13) 

(2.14) 

(2.15) 
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a-d 
UI =--w,(t+a -K x), u, =o, u,=o, u* =o (2.16) 

a 

If follows from (2.13)-(2.16) that solutions (2.11) and (2.12) at the boundaries of the sections 
(0, a-b) and (0, dmb) h ave different values and do not agree with expressions (1.4) and (1.5) of the similar 
solutions (1.1) for an isotropic medium. In this case, each of the solutions (2.11) and (2.12), obtained 
from one of the two conditions (2.10), defines the propagation of one type of wave in the directions of 
the axes of elastic symmetry of the medium, namely, quasi-longitudinal or quasi-transverse waves, which 
does not agree with the physical meaning of the problem. This can be explained by the fact that the 
ratios of the components of the displacement vectors uk/% = -(c0A&‘p, of the quasi-transverse and 
quasi-longitudinal waves of solutions (2.11) when 0 = 0 and 0 = a-%, and the ratios uk/q = -r,J(c&) 
of the quasi-longitudinal and quasi-transverse waves of solutions of (2.12) when 0 = 0 and 
8 = d-b have an indeterminacy of the form O/O. 

It follows from (2.13)-(2.16) that, summing solutions (2.11) and (2.12), we obtain solutions of system 
of equations 2.1) which define the propagation of quasi-longitudinal and quasi-transverse waves for 
8 = 0,8 = a- A (k = 1) and 0 = d-b (k = 2). These solutions can be obtained directly using generalized 
conditions, which establish the relation between functions (2.8). 

Summing the left-hand sides of expressions (2.10), we obtain a generalized condition of the 
form 

(pk +&h,)U;(R,)+(r, +c%)WQk) =O (2.17) 

By (2.17) the solutions of the equations of motion (2.1), which describe plane waves, have the form 

Ut =(rk +&&)w,(fi,), nk =-(& +cehk)wk(nk) 

& =t+k+h,y, k=1,2 

(2.18) 

where wk are arbitrary continuous twice-differentiable functions, if the coefficients of the variable 
quantities are real. If some of these coefficients in any region of space x, y, t are complex 
quantities, then wk are analytical functions in this region. The solutions obtained satisfy condition 
(2.17), each of conditions (2.10) and system of equations (2.1), as can easily be shown by direct 
substitution. 

Solutions (2.X3), for values of 8 corresponding to the propagation of waves in the direction of they 
and x axes, take the following values: 
when 8 = 0 

b-d 
Ul =o, u, =- 

b 
w, (t + b-&y) 

b-d 
u =-w,(t+d-&y), vp =O 

2 d 

when 0 = a ?h (k = 1) and 8 = d-b (k = 2) 

a-d 
UI =--w,(t+a -4). f/, =o 

a 

up=o, u2= 
a-d 

--w2(t+d 
d 

-4) 

(2.19) 

similar to the values (1.4) and (1.5) for an isotropic medium. 
For values of the constants of elasticity b = a and c = u-d, corresponding to an isotropic 

medium, (2.18) reduce, apart from the constant factors A and B, to the solutions (1.4) of the wave 
equations 

ui = Aew,(Q,), uI = A5,w,(fi,) 

u2 = B~,w,(R,), u2 = -Bew2(n2) 

nk =t+ex+tky, k=1,2 

(2.21) 
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The functions hi and AZ, represented by expressions (2.9), are branches of the algebraic function X, 
uniquely defined on the Riemann surface, the form of which depends on the ratios of the constants of 
elasticity. 

For the condition [13] 

(a-d)b-c* >o (2.22) 

the branching points for the outer radicals (2.9) are the point! 01 = ?a-% when k = 1 and the points 
O2 = ?d-b when k = 2, and for the inner radicals the points 8i, which, depending on the ratios of the 
constants of elasticity, may be complex, imaginary or real. The Riemann surface consists of the planes 
8i and O2 with cuts A = (-a-b, +a-%) and D = (-d -b, +d-%), joined criss-cross along the cuts which 
join the branching points 84. In Fig. 1 we show the Riemann surface for the case when the branching 
points Of are pairwise complex conjugate. 

On the sides of the cuts A of the plane 8i and D of the plane 02, the function hi and A2 have real 
values, and the functions (2.18) express real plane waves: quasi-longitudinal for k = 1 and quasi- 
transverse for k = 2, which propagate with normal velocities and directions of motion, defined by the 
formulae [ 121 

b,, = (8* + hi )-& 9 tga, =0/A-L (2.23) 

where uk are the angles which the normals to the wave fronts make with they axis. By fixing the functions 
Xi and A2 in the 8i and O2 planes of the Riemann surface so that they are positive when 0 = ip, where 
p is a fairly small positive quantity, it is sufficient to investigate the real solutions (2.18) on the upper 
sides of the cuts-4 of the 8i plane and D of the O2 plane for positive values of 0, since the anisotropic 
medium is symmetrical about the x and y axes. 

In the sections 

O~f3<& O<Cl<d-x (2.24) 

of the upper sides of the cuts of the 0i and Cl2 planes, in accordance with formulae (2.23), the functions 
(2.18) express quasi-longitudinal (k = 1) and quasi-transverse (k = 2) waves, which propagate with 
continuously increasing angles 0~~ and cy2 in the intervals 

Osa,an/2. 0~a2sx/2 (2.25) 

and with continuously varying normal velocities with values on the boundaries of the sections 

b,(O) = bK, b, (a+$ = ix, q(O) = q(d-%) = dK (2.26) 

When the condition 

(a-d)b-c* <0 (2.27) 

is satisfied, which was not considered in [l], the Riemann surface has a different form (Fig. 2). The 
outer radical of the function hi has four branching points: Cl1 = ?a-% and f!r2 = td-n, and the outer 

Fig. 1 
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Fig. 2 

radical of the function X2 has no branching points [12]. From the four branching points for the 
inner radical of the function Xi and A2 we have: two real 29; and two imaginary ?eJ, where 
0; > d-b. The function A, is unique in the 8t plane with cutsA, (fdmyz, kf3’;) and (?f$, 2~) along the 
real axis and with cuts (?0;, +iw) along the imaginary axis. The function AZ is unique in the e2 plane 
with cuts C = (-f$, +0;) along the real axis and with cuts (?-+ei, 5~) along the imaginary axis. The 
Riemann surface consists of the 8i and f& planes, joined criss-cross along the edges of the cuts 
(zey, ?x) and ($, +&~a). 

On the edges of the cuts A and ( +dey2, +8” J of the 0i plane and C of the 612 plane the functions A, 
and AZ have real values, and the functions (2.18) represent real waves. 

In the sections 

ofsesa-x, 0~0~8; (2.28) 

of the upper edges of the cuts of the 0i and e2 planes, the functions (2.18), in accordance with formulae 
(2.23), represent quasi-longitudinal (k = 1) and quasi-transverse (k = 2) waves, propagating with 
continuously increasing angles o1 and 0~~ in the intervals 

and with continuously varying normal velocities with values at the boundaries of the sections [12] 

f~,(o)=b%, b@)=& b2(0)=dY2, b2(e;)<dK (2.30) 

In the section (+a ~%, +d-fi) of the 8, plane the function A1 takes imaginary values A, = --iA;, and 
the functions (2.18) fork = 1 describe complex quasi-longitudinal waves 

U, =(q -~e.ih;)~,(R;), U, =-(p, -&.ih;)w,(R;) 

G!; =t+Ox-iX:y 

At the upper edge of the cut B = (+d my2, +O~) of the 8i plane the function Xi takes real values -A,. 
In the sections B of the upper edges of the cuts B of the 8, plane and C of the e2 plane the functions 
(2.18) have the form 

u, =(q - ceh,)~,(n;), U, =-(p,-ceh,)~,cn;) 

u2 =(r2+Cehp)W2(~;), ~,=-(p,+~eh,)w~cn;~ 

~2: =t+exfh,y 

(2.31) 

and describe real waves. 
When going clockwise round the branching point 0; from the upper edges of the cuts C of the e2 

plane and B of the 8, plane, on the lower edges of the cuts B of the 0i and C of the e2 plane the functions 
A2 and Ai take the values A, and AZ, respectively. On the lower edges of the cuts B and C the functions 
(2.31) take the form 
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UI = (q + ceh, )w, <szl’ h Ul =-(fi +ceh,)w,cQ:) 

4 =(3 --ceh&v2ca;>, u2 =-(P2 4ww2c~;) (2.32) 

The function u2 and y in expressions (2.31), representing quasi-transverse waves, and the functions 
u1 and y in expressions (2.32) at the branching point 0; have the same values. Consequently, the functions 
(2.18) in the sections B of the upper and lower edges of the cuts of the e1 and e2 planes of the Riemann 
surface (Fig. 2) only describe quasi-transverse waves. This feature has a direct connection with the 
existence of acute-angled edges on the quasi-transverse wave fronts from a point source [13] when 
condition (2.27) is satisfied. 

In the section 

+d-kese; (2.33) 

of the lower edge of the cut of the 6t plane the functions (2.32) when k = 1 describe quasi-transverse 
waves propagating in accordance with formulae (2.23), with continuously decreasing angles rxl and 
normal velocities br in the intervals 

7t/23a, >-a,@;)=a,@;), dK 3bb,2=b,(8;)=b2(8;) (2.34) 

On the edges of the cuts (+ 0;) +-) of the 8r and e2 planes the functions X1 and X2 have complex 
values and the functions (2.18) describe complex waves. 

Hence, solutions (2.18) of the equations of motion (2.1), describing plane waves, depending on 
conditions (2.22) and (2.27), for the constants of elasticity, are uniquely defined on the real axes of the 
f3r and e2 planes of the Riemann surfaces, shown in Figs. 1 and 2, and uniquely describe the propagation 
of waves in any directions. 

We obtain complex solutions of a general type of the equations of motion (2.1) by taking 1(n) = 1, 
n(Q) = X, in Eqs (2.5)-(2.7), and taking I3 = m(Q) as the new variable. In this case K(Q) will be a 
function of the variable 0, while the roots X1 and X2 of Eq. (2.7), defined by expression (2.9) and 
representing branches of the algebraic function A, are uniquely defined on the Riemann surface 
(Figs 1 and 2). 

Solutions (2.8) of Eqs (2.1) take the form 

U& = V,@,), rJ& = v&(8,) (2.35) 

while Eq. (3.5) takes the form 

6, =t+ekx+hky+Kk(ek)=o (2.36) 

where Kk are the branches of a certain analytical function K. 
The generalized condition, which establishes relations between functions (2.35), takes the form 

f~; (e,)i(G +a,)=-v;(e,)i(p, +ceh,)= ~~(8,) (2.37) 

By (2.37) the general real solution of Eqs (2.1) is expressed by the functions 

(2.38) 

h, =(H+(-1)‘[H2-(a/b)(1/a-~Z)(11d-~2)]~)~ 

H = [(b + d) - (ab + d2 - c2)&2]/(2bd) 
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Solution (2.38), depending on the ratios of the constants of elasticity (2.22) and (2.27), is uniquely 
defined on the Riemann surfaces shown in Figs 1 and 2. The correspondence between the points of 
the Riemann surface and the points of thexy plane is expressed by Eq. (2.36). The functions hi and A2 
have real values on the edges of the cutsA of the 9, plane and D of the 62 plane (Fig. 1) under conditions 
(2.22) and on the edges of the cuts A and (?d -b, H;) of the 8, plane and C of the e2 plane (Fig. 2) 
for condition (2.27). The wave fronts of the quasi-longitudinal and quasi-transverse waves (2.38) can 
be obtained as the envelope of the straight lines (2.36) for real values of 0k and Xk. The functions w1 
and w2 are branches of the arbitrary analytical function W, and the functions are chosen so that the real 
parts of the functions w1 and w2 vanish on the edges of the cuts of the 81 and 62 planes, which have real 
values of the functions hi and AZ. 

Uniform zero-dimensional solutions of Eqs (2.1), which express the propagation of elastic vibrations 
in an anisotropic medium from a point source of the instantaneous-pulse type at the origin of coordinates, 
can be obtained as a special case of the general solutions, if we put Kk(Q = 0 in Eqs (2.36). In this 
case Eq. (2.36) takes the form 

1+8,<+hr.tj=0 (<=x/t, rl=ylt) (2.39) 

The uniform solutions are expressed by the functions (2.38) and differ in form from the solutions 
obtained in [l]. 

3. SOLUTION OF THE PROBLEM OF THE REFLECTION OF PLANE 
WAVES AT THE BOUNDARY OF AN INISOTROPIC HALF-SPACE 

The problem of the reflection of plane waves at the boundary of an anisotropic half-space with four 
constants of elasticity was solved in [l] using expressions (2.11) for plane waves, obtained by employing 
the first condition of (2.10) for the components of the displacement vectors. 

For comparison with these solutions, we will consider the solution of this problem by expressing the 
quasi-longitudinal and quasi-transverse waves by the functions (2.18) obtained using generalized 
condition (2.17). 

Suppose a quasi-longitudinal wave 

u, =U,(dx+h,y), LJ, =V,(r++h,y) (3.1) 

is incident on a stress-free boundary y = 0 from an anisotropic half-space y > 0. 
By relations (2.18), we can express the incident quasi-longitudinal wave and the reflected quasi- 

longitudinal and quasi-transverse waves by the functions 

u, = ij;w, n: ( 1 
, IJ, = -\7r;w, n; ( 1 

UII =‘P;~wI Q; 9 ( 1 UII = -v’;W,(%) (3.2) 

a21 =cp;B,w,(Q;)* u21 =-v@w(Qi) 

n;=r-exzkhty (k=l.2) 

cpi =rk +&A,, rj~; = pk + ceh, 

6 = ‘k -ceh,, ip; = Pk -ceh, 

Substituting the values U = u1 + uii + u2i and V = y + uil + y1 into the boundary conditions [l] 

(C-d)$+b$=O, g+g=o (y=O) (3.3) 

we obtain the system of equations 

[LA+& -k--d)ecp;]A, +[wlf; - cc - d)etp;]B, = bh, q; + (C - d>e$; 

[ev; - Q;]A, +[e~; - h,cp;]B, = -e+; - W 

(3.4) 
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Solving system (3.4) by the method of determinants, we obtain 

where 

Here 

A, =-(-(t;/v;)4,~ 4 = -(P& / PN;)~, (3.5) 

A,, = R+ / R-. A,, = S(h,)lQ- (3.6) 

R* = (h, *h,){{~~6-(c-d)‘]e2-6}(1/d-e2)~*(~6)~(1/o-82)~} 
S(h,) = 2h,([ab - c(c - d)]e2 + MA; - b)[ae2 -(c - d)a.. - I] 

Q- =c(a/b~~(l/a-C12)HR- 

(3.7) 

Unlike existing results [l] the factors (A, + X2), A, and (A, - X2) are included in the quantities R+, 
S(A,) and R-. 
,j Substituting (3.5) into (3.2) and taking into account the relations 

&/I& =cOh,/pkr +I; =-pg&/cehk 

which arise from relations (3.2) and (2.10), we obtain the solution of the problem of the reflection of 
quasi-longitudinal waves in the form 

u, = ig;w, n; ( 1 , u, = -i&;w, a; ( 1 
@II =@W, Q; 9 ( 1 u,, = t+$,w,(Q;) (3.8) 

,421 =t’;(~2%)A2,~,(f4)r ~21 =%(~zh)A2,~,(%) 

Taking into account the fact that the incident quasi-longitudinal wave satisfies condition (2.17), we 
can write solution (3.8) in the form 

u, =u, n: , ( ) u, = v,(q) 

UII =A,&‘,(%)~ UII =-A,,@;) (3.9) 

~21 =(5,l~,)A2,~,(4~ ~21 =-(P~IP,)A~,VI(%) 

The solution of the problem of the reflection of quasi-transverse waves is constructed in the same 
way and has the form 

u, =%2(G). lJ2 = -gljr;w, a; 
( ) 

,412 = -@;(h, ~~,)A,,w,(Q;)v ~12 = -%(P, /~2)A,,w,(n;) 

,422 = -@;A22w2(f&)9 ~22 = 4;4,w2(4 

(3.10) 

where 

A,, = S(h,)/Q-, A,, = R+ I R- (3.11) 

and S(A2), Q- and R' are defined by (3.7). Unlike existing results [l], the factors 2A2, (A, + AZ) and 
(A, - X2) are included in the values of the constants S(A2), R+ and R-. 
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Taking into account the fact that the incident quasi-transverse wave satisfies condition (2.17), solution 
(3.10) can be written in the form 

u2 = f-$2;), u2 = v,(n;) 

4412 = -(A, /~2)42U2(4 ~12 = (PI b2)42V2(4 (3.12) 

~22 = -A,,~,(47 ~~22 = A22”2(R;) 

Solutions (3.8)-(3.10) and (3.12) are uniquely defined on the Riemann surfaces shown in Fig. 1 with 
condition (2.22), and Fig. 2 for condition (2.27) for the constants of elasticity. The case (2.27) was not 
considered previously in [ 11. 

The solutions of the problems of the reflection of quasi-longitudinal and quasi-transverse waves of 
the form (3.8) and (3.10) differ from the similar solutions obtained previously in [l] by the presence 
of the factors Cpi, $; and ‘pz, I&. The coefficients Ai,, AZ1 and Ai2, Azz have the same values, since they 
are determined by the boundary conditions. 

Quasi-longitudinal and quasi-transverse waves, when propagating in the directions of the axes of 
symmetry of the mediumy (when 0 = 0) andx (when 8 = a -Vz and 8 = -d-b) become purely longitudinal 
and purely transverse waves. 

When the incident quasi-longitudinal and quasi-transverse waves travel in directions normal to the 
boundary of the medium and along the boundary, solutions (3.8) and (3.10) take the following values: 

Solution (3.8) when 8 = 0 

V, =(b-d)b-‘w,(r+b+$), u,, =(b-d)b%,(r-E%y) (3.13) 

u, =u,, =I.$, =u2, =o 

when 0 = a-y2 

q =-(a-d)a-‘w,(t-Ox), u,, =(a-d)a-‘w,(t-Ox) 

u, =u,, =u2, =u2, =o 

solution (3.10) when 0 = 0 

U2 =(b-d)d-‘w,(r+d-q, u22 = (6 - d)d%,(t -d-X,) 
u2 = u,2 =u,2 =tJ22 = 0 

when 8 = d-fi 

(3.14) 

(3.15) 

u2 =(a-d)d-,w2(t-d-Kx), u22 =-(a-d)d-‘w2(t-d-Kx) (3.16) 

u2 = up2 = u,2 = u ,2 = 0 

The values (3.13)-(3.16) agree with the corresponding values in the similar problem for an isotropic 
half-space [15]. 

For values of the constants of elasticity b = a and c = a - d, solutions (3.8) and (3.10) reduce to the 
solutions of the similar problem for an isotropic half-space [4]. 

We will compare the solutions of the problems of the reflection of quasi-longitudinal and quasi- 
transverse waves in the form (3.9) and (3.12) with the similar solutions obtained previously in [l]. 
Substituting the quantities (3.6) into solutions (3.9) we obtain solutions (43) and (44) from [l]. Taking 
into account the fact that in [l] A = -AlI and B = -AZ,, the solution of the problem of the reflection 
of quasi-longitudinal waves (43) and (44) reduces to the form (3.9). We can similarly show that the 
solution of the problem of the reflection of quasi-transverse waves obtained in [l] reduces to the form 
(3.12) and the intensity coefficients have the same values, since they are determined by the boundary 
conditions. 

Hence, solutions (3.9) and (3.12) are identical in their external form with the similar solutions obtained 
in (11, with the sole difference that the relation between Uj and 5 in solutions (3.9) and (3.12) is 
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established by the generalized condition (2.17) while in the solutions from [l] it is established by the 
first condition of (2.10). 

Comparing solutions (3.9) and (3.8) and also (3.12) and (3.10), we obtain 

(3.17) 

It follows from (3.17), on the basis of the results of an analysis of solutions (2.18) of the equations of 
motion (2.1), that solutions (3.9) and (3.12) agree with the solutions of the similar problem for an 
isotropic medium. 

In the solutions obtained in [l], the functions Uj and 4 have the following values: 

~j(n:)=cehjWj(a:), Vj(n:)=piWj(n:), i=1,2 (3.18) 

According to the results of an analysis of solutions (2.11), obtained on the basis of the first condition 
of (3.10), it follows from (3.18) that the solutions of the reflection problem [l], expressed in terms of 
the functions Uj and l$ do not agree with the solutions of the similar problem for an isotropic 
medium when the incident waves in the directions of the axes of elastic symmetry of the medium are 
considered. 

Note that, if in the solutions obtained in [l], we assume that the functions Vi and l$ satisfy the 
generalized condition (2.17), the functions U and V will take the values (3.17) while the solutions 
themselves will be identical with solutions (3.9) and (4.12) since the intensity coefficients in them have 
the same values. This can be shown by substituting the values (3.17) into the solutions obtained previously 
in [l]. As a result we have solutions (3.8) and (3.10), which are equivalent to solutions (3.9) and (3.12). 

4. THE EQUATIONS OF MOTION IN POTENTIALS 
AND THEIR SOLUTION 

An arbitrary vector field can be represented in the form of the sum of an irrotational field and a 
solenoidal field. Introducing the potentials of the irrotational and solenoidal perturbations using the 
formula [2] 

u=(Px+wy, lJ =cp,-wx (4.1) 

we obtain the equations of motion (2.1) in potentials 

[ acp, + (d + CM, -‘P,,],+[(a-c)W,+dWyy-~“ly=O (4.2) 

[cd + c)cpx.r + bcp, - ‘Pely - [dw, + (b - CNyy - v,,]x = 0 

We will express the solution of system of equations (4.2) by the functions 

(p=@(Q), w=Y(Q) (4.3) 

where function fi is defined in implicit form by Eq. (2.5). We mean by Cp and 1I’ continuous triply 
differentiable functions, if the coefficients of the variables in them are real. If some of these coefficients 
in some region of space x, y, c are complex quantities, then @ and * will be analytical functions in this 
region. 

Expressing the derivatives of function (4.3) using the ordinary rules of differentiation of complex 
and implicit functions [2] and substituting their values into Eqs (4.2) we obtain the conditions 

,[,,* + (d + c)n* - f*]@‘+ n[(a - c)m* + dn* - l*]Y = 0 

n[(d + c)m* + bn* - I*]W - tn[dm* + (b - c)n* - f*]~’ = 0 (4.4) 

which establish the relation between functions (4.3). If functions (4.3) satisfy conditions (4.4), they will 
also satisfy system of equations (4.2). 

System of linear equations (4.4) has non-zero solutions if its determinant is equal to zero 
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m2 1 am2 + (d + c)n2 -f2][dm2+(b-c)n2 -f2]+ 

+n2[(a-c)m2 +dn2 -f2][(d+c)m2+bn2 -I’]=0 (4.5) 

Equation (4.5) establishes a relation between the functions I(Q), m(Q), n(Q), and also between the 
derivatives W(Q) and V’(Q) according to conditions (4.4). 

Consequently, the functions (4.3) express the solution of the equations of motion in potentials (4.2), 
if the argument Q with coefficients, 1, m, n, which are subject to Eq. (4.5) is determined by Eq. (2.5), 
while the functions (4.3) themselves satisfy conditions (4.4). 

Assuming 1(Q) = 1, m(Q) = 8, n(S2) = A and K(Q) = -9 in Eq. (2.5) we obtain the simplest 
solutions of the equations of motion (4.2). In this case the roots hk of Eq. (4.5) have the values 
(2.9). 

Introducing the functions @k(&) and *\Irk(&), corresponding to the roots &, we conclude that the 
solutions of Eqs (4.2) which describe plane waves, are expressed by the functions 

cpk =@$I,). yr, =Y&-Q n, =?+8x+h,y, k=1,2 (4.6) 

Conditions (4.4) take the form 

-f3(& +cQD$&)+h,(p, -cez)Y$2k)=0 

A,(~~ +Ce2)Q2k)+e(~k -c~‘,)Y$~,)=o (4.7) 

and establish a relation between the functions (4.6) 
Previously [2], the first condition of (4.7) was used to construct a solution in potentials. In this case 

the relation between functions (4.6) is expressed by the condition 

@A%> \flkPk) 
-hJp, _ce2) = e(p, +A:) =h(nk) (4.8) 

Solution (4.6) takes the form 

‘P, =-h&% -C92)f,(%)V Wt =e(Pt +cA$i(nk) 

Taking relations (4.1) into account, we obtain a solution of Eqs (4.2) in displacement 

(4.9) 

+ = ceh,(e2 + x.$$2,), uk = -pk(e2 + hZ,)f,‘(Q,) 

Similarly, the second condition of (4.7) leads to a solution of Eqs (4.2) 

(4.10) 

(Pk =+ -ch’,)fk(nk)? vk =xk(rk +Ce2)fk(Rk) 

The solution in displacements has the form 

(4.11) 

uk = rk(e2 +hZ,)f;(Rk), uk =-c&(e2 +h2,)f;(&) (4.12) 

Solutions (4.10) and (4.12) apart from the factor (0’ + A:) f 0, agree with solutions (2.11) and (2.12) 
of equations of motions (2.1) obtained using one of the two conditions (2.10). Consequently, solutions 
(4.9)-(4.12) of the equations of motion in potentials (4.2), obtained using one of two conditions (4.7), 
do not agree with the physical meaning of the problem and with solutions (1.1) for an isotropic medium. 
It follows from relations (4.10) (4.12) and (2.18) that the solutions of the equations of motion in 
potentials (4.2) can be obtained as the sum of solutions (4.9) and (4.11). 

These solutions can be obtained using the generalized condition obtained by summing conditions 
(4.7) i.e. 

[h,(r, +ce2)+e(& +ChZ,)]@;(nk)+[&(& -e92)-e(~k -&)]y;(n&o (4.13) 
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According to condition (4.13), the solutions of Eqs (4.2), which describe plane waves, take the form 

cpk =-[&,(/I, -ce’)-+i -4)lft(a,) 
yrk =[e(p, +A;)++ +~2)].h(fik) (4.14) 

a, =t+Ox+hky, k=1,2 

wherefk are the branches of an arbitrary continuous triply differentiable function f, if the coefficients 
of the variables are real. If some of these coefficients in some region x, y, t are complex quantities, then 
fin this region will be an analytical function. Solutions (4.14), like solutions (2.18) are uniquely defined 
on Riemann surfaces, the form of which is shown in Figs 1 and 2. 

We will consider the construction of complex solutions of a general type for the equations of motion 
in potentials (4.2), taking Z(n) = 1, n(Q) = A in Eq. (2.5) and taking the quantity 8, defined by the 
expression m(Q) = 8, as the new variable. In this case A and K(Q) will be functions of the variable 0, 
while Eq. (2.7) will have roots Xi and X2, defined by (2.9). 

Solutions (4.3) of the equations of motion (4.2) can be expressed by the functions 

qk = d’k(e,), wk = yk(ek) (4.15) 

while Eq. (2.5) has the form 

6, =t+t++X,y+&(8,)=0 (4.16) 

where Kk are the branches of a certain analytical function K. 
The conditions which establish the relations between functions (4.15) according to relations (4.4), 

are expressed by equations, by summing which, we obtain a generalized condition, which differs from 
condition (4.13) by replacing 0 and &2, by Ok. 

According to this generalized condition, the general real solution of Eqs (4.2) is given by the expressions 

(4.17) 

eJ[;L,(,,+c52)+5(Pt+ch:)]wk(5)d5 I 
The correspondence between the points of the Riemann surface (Figs 1 and 2) and points in the xy 
plane is expressed by Eq. (4.16). 

The zero-dimensional homogeneous solutions of the equations of motion (4.2) which describe elastic 
vibrations induced by a point source of the instantaneous impulse type at the origin of coordinates, can 
be obtained as a special case of the general solutions if we assume that Kk(ek) = 0 in Eq. (4.16). in this 
case Eq. (4.16), which expresses the correspondence between points of the Riemann surface and the 
xy plane, takes the form 

1+8&+hkn=O (5=X/t, ?,=ylf) (4.18) 

The homogeneous solutions of equations of motion (4.2) are expressed by functions (4.17). 
The functions w1 and w2 are branches of an arbitrary analytical function w, uniquely defined on the 

Riemann surface shown in Fig. 1 when condition (2.22) is satisfied, and Fig. 2 when condition (2.27) 
is satisfied. In order that solution (4.17) should express elastic vibrations, induced by a point source in 
an unbounded medium, the function w must be chosen so that the real parts of the functions w1 and 
w2 vanish on the following edges of the cuts of the 8i and Cl2 planes of the real definition of the functions 
Ai and X2: when condition (2.22) is satisfied-on the edges of the cuts (-a-“, +a-%) of the Cl1 plane and 
(-U-H, +d-fi) of the e$pl ane (Fig. 1); when condition (02.27) is satisfied - on the edges of the cuts (-a-*, 
+a-%) and (+d-n, %t3,) of the 8i plane and (-8;, +e,) of the t12 plane (Fig. 2). The wave fronts in the 
5,~ plane correspond to the edges of these cuts [12,13], which are expressed as the envelopes of straight 
lines (4.18) for real values of (3, and Ak. 
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5. CONCLUSION 

Note that when using the Smirnov and Sobolev method to solve the equations of motion in displacements 
(2.1) and potentials (4.2), we arrive at conditions (2.6) and (4.4) for the components of the displacement 
vectors and for the scalar and vector potentials. 

For plane waves, conditions (2.6) and (4.4) take the form (2.10) and (4.7). We have established that 
solutions (2.11) and (2.12) of the equations of motion in displacements, obtained, as previously in [l], 
on the basis of one of the two conditions (2.10), determine, in the directions of the axes of elastic 
symmetry of the medium, the propagation of only one type of wave - quasi-longitudinal or quasi- 
transverse, which does not agree with the physical meaning of the problem and with the solutions of 
the wave equations of isotropic media. We have a similar pattern for solutions (4.9) and (4.11) of the 
equations of motion in potentials, obtained, as previously in [2], from one of the two conditions (4.7). 

We have established that the solutions of the equations of motion in displacements and potentials, 
obtained as the sum of solutions (2.11), (2.12) and (4.9), (4.11), agree with the physical meaning of the 
problem and with the solutions of the wave equations of isotropic media. These solutions in displace- 
ments and potentials can be obtained directly from the generalized conditions (2.17) and (4.13), which 
follow from conditions (2.10) and (4.7). 

We have proposed a new method of constructing the solutions of the equations of motion (2.1) and 
(4.2) using generalized conditions for the components of the displacement vectors and for the scalar 
and vector potentials, obtained from conditions (2.6) and (4.4). We have obtained and investigated 
solutions of the equations of motion in displacements and potentials, which express plane waves and 
waves from point sources, and also complex solutions of a general type. For comparison with the results 
obtained in [l] we have solved the problem of the reflection of plane waves from a free boundary of 
an anisotropic half-space. 

Despite some complexity of the solutions, their expression in terms of reverse apparent velocities in 
the directions of the axes of elastic symmetry and their unique determination on the Riemann surfaces 
(Figs 1 and 2) enables them to be used to solve a number of specific problems and to carry out analytical 
investigations of fairly complex wave processes in anisotropic media. 
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